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Abstract

A computational methodology is developed to efficiently perform uncertainty quan-
tification for fluid transport in porous media in the presence of both stochastic
permeability and multiple scales. In order to capture the small scale heterogeneity,
a new mixed multiscale finite element method is developed within the framework
of the heterogeneous multiscale method (HMM) in the spatial domain. This new
method ensures both local and global mass conservation. Starting from a specified
covariance function, the stochastic log-permeability is discretized in the stochastic
space using a truncated Karhunen-Loève expansion with several random variables.
Due to the small correlation length of the covariance function, this often results in a
high stochastic dimensionality. Therefore, a newly developed adaptive high dimen-
sional stochastic model representation technique (HDMR) is used in the stochastic
space. This results in a set of low stochastic dimensional subproblems which are
efficiently solved using the adaptive sparse grid collocation method (ASGC). Nu-
merical examples are presented for both deterministic and stochastic permeability
to show the accuracy and efficiency of the developed stochastic multiscale method.
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1 Introduction

Flow through porous media is ubiquitous, occurring from large geological
scales down to microscopic scales. Several critical engineering phenomena like
contaminant spread, nuclear waste disposal and oil recovery rely on accu-
rate analysis and prediction of these multiscale phenomena. Such analysis is
complicated by heterogeneities at various length scales as well as inherent
uncertainties. For these reasons in order to predict the flow and transport
in stochastic porous media, some type of stochastic upscaling or coarsening
is needed for computational efficiency by solving these problems on a coarse
grid. However, most of the existing multiscale methods are realization based,
i.e. they can only solve a deterministic problem for a single realization of the
stochastic permeability field. This is not sufficient for uncertainty quantifica-
tion since we are mostly interested in the statistics of the flow behavior, such as
mean and standard deviation. In this paper, we propose a stochastic multiscale
approach which resolves both uncertainties and subgrid scales by developing a
new multiscale method and adopting a newly developed adaptive high dimen-
sional stochastic model representation technique (HDMR). The goal of the
multiscale method is to coarsen the flow equations spatially whereas HDMR
is used to address the curse of dimensionality in high dimensional stochastic
spaces.

One of the challenging mathematical issues in the analysis of transport through
heterogeneous random media is the multiscale nature of the property varia-
tions. Complete response evaluation involving full-scale spatial and temporal
resolution simulations of multiscale systems is extremely expensive. Compu-
tational techniques have been developed that solve for an appropriate coarse-
scale problem that captures the effect of the subgrid-scales. The most popu-
lar techniques developed for such upscaling fall under the category of multi-
scale methods viz. the multiscale finite element (MsFEM) method [1,2], the
variational multiscale (VMS) method [3,4] and the heterogeneous multiscale
(HMM) method [5,6]. The MsFEM was originally developed in [1,2] for the
solution of elliptic equation based problems with multiscale coefficients using
conforming linear finite elements. The primal unknown is the nodal value,
e.g. the pressure, and one can obtain the velocity by calculating the gradient
of the pressure field given the finite element solution. The result is generally
not accurate and conservation of the flux in each element may be violated,
which is an important property for the numerical solution of transport equa-
tions in porous media. Therefore, a mixed multiscale finite element method
(MMsFEM) that guarantees the local mass conservation at the element level
was proposed in [7] using the lowest-order Raviart-Thomas mixed finite ele-
ment [8]. The basic idea of the method is to construct the multiscale finite ele-
ment basis functions that incorporate the small scale information through the
solution of a local problem in each element and couple them through a global
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formulation of the problem. However, this work only produces a globally mass
conserving velocity field. This work was extended in a number of important
ways to guarantee mass conservation on both fine- and coarse-scales [9,10].
A similar framework utilizing the finite volume method as the global solver
was also proposed in [11–13], which also preserves mass conservation at both
scales. The basic idea of the VMS method is to invoke a multiscale split of
the solution into a coarse-scale part and a subgrid component. The variational
coarse-scale problem is performed and solved using the solution of the local-
ized subgrid problem. Parallel to MMsFEM, a mixed finite element version of
VMS was also proposed in [14–16], which is often called “Numerical subgrid
upscaling”. A thorough comparison of the above three methods for elliptic
problems in porous media flows can be found in [17].

Unlike the MsFEM which was built on the finite element method (FEM),
the HMM is a more general methodology for multiscale PDEs (see [6] for a
review). The basis idea of HMM consists of two components: selection of a
macroscopic solver and estimating the needed macroscale data by solving lo-
cally the fine-scale problem. It allows two different sets of governing equations
on macro- and micro-scales, e.g. atomistic simulation on micro-scale and con-
tinuum simulation on macro-scale [18,19]. This framework was utilized to solve
multiscale elliptic problems with the conforming linear FEM (FeHMM) [20–
22]. The method was analyzed in a series of papers [23–25]. However, unlike
the MMsFEM, there is no discussion of the mixed version of FeHMM except
the work in [26], where the author first developed the theory of the mixed fi-
nite element version of HMM for the elliptic problem and proved the stability
and convergence of this new method. However, the primitive idea in [26] is
only a simple extension to the original theory of HMM which in general is not
suitable for realistic problems such as flow through porous media. In addition,
no numerical implementation was given in [26]. Motivated by the work in [26],
in this paper, we first develop and implement the mixed finite element version
of HMM with application to flow transport in heterogeneous porous media,
which we will call it mixed heterogeneous multiscale method (MxHMM).

All of the above mentioned multiscale analyses of such systems inherently
assume that the complete multiscale variation of the permeability is known.
This assumption limits the applicability of these frameworks since it is usually
not possible to experimentally determine the complete structure of the media
at small scales. One way to cope with this difficulty is to view the permeabil-
ity variation as a random field that satisfies certain statistical correlations.
This naturally results in describing the physical phenomena using stochastic
partial differential equations (SPDEs). The development of efficient stochastic
methods that are applicable for flow in porous media has drawn significant
interest in the last few years. Several techniques like generalized polynomial
chaos expansions (gPC) [27–29], perturbation/moment equation methods [30–
33] and stochastic collocation method [31,34–37] have been considered. Among
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these methods, the collocation methods share the fast convergence of the gPC
method while having the decoupled nature of Monte Carlo (MC) sampling.
This framework represents the stochastic solution as a polynomial approxima-
tion. This interpolant is constructed via independent function calls to the de-
terministic problem solver at different interpolation points which are selected
based on special rules. Choice of collocation points include tensor product of
zeros of orthogonal polynomials [34,38] or sparse grid approximations [39–41].
It is well known that the global polynomial interpolation cannot resolve lo-
cal discontinuity in the stochastic space. Its convergence rate still exhibits a
logarithmic dependence on the dimension. For high-dimensional problems, a
higher-interpolation level is required to achieve a satisfactory accuracy. How-
ever, at the same time, the number of collocation points required increases
exponentially for high-dimensional problems (> 10). Therefore, its computa-
tional cost becomes quickly intractable. This method is still limited to a mod-
erate number of random variables (5− 10). To this end, Ma and Zabaras [42]
extended this methodology to adaptive sparse grid collocation (ASGC). This
method utilizes local linear interpolation and uses the magnitude of the hier-
archical surplus as an error indicator to detect the non-smooth region in the
stochastic space and thus place automatically more points around this region.
This approach results in further computational gains and guarantees that a
user-defined error threshold is met. However, this method is still not suit-
able for heterogeneous porous media with small correlation length leading to
high stochastic dimensionality. In recent work, Ma and Zabaras [43] combined
the ASGC with the adaptive stochastic high dimensional model representa-
tion (HDMR) technique [44]. HDMR represents the model outputs as a finite
hierarchical correlated function expansion in terms of the stochastic inputs
starting from lower-order to higher-order component functions. HDMR is ef-
ficient at capturing the high-dimensional input-output relationship such that
the behavior for many physical systems can be modeled to a good accuracy
only by the first few lower-order terms. An adaptive version of HDMR is also
developed to automatically detect the important dimensions and construct
higher-order terms using only the important dimensions. The heterogeneity of
the porous media is often due to the small correlation length of the covariance
structure. All the above mentioned works did not take into account the mul-
tiscale nature of the permeability. Therefore, in this work, we will use both of
these developments in the stochastic space together with the newly developed
MxHMM for the spatial discretization.

There exists several new stochastic multiscale methods for elliptic problems.
In [45] and [46], the variational multiscale method was extended to a stochas-
tic version using gPC and stochastic collocation method respectively to solve
a simple diffusion problem. The stochastic multiscale finite element was also
developed in [47] however only an elliptic problem was solved to find the hy-
draulic head. More related work can be found in [48–50]. In [48], the stochastic
numerical subgrid upscaling method was also developed for the solution of the
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mixed form of the Darcy’s equation using the stochastic collocation method.
However, in that work, only the statistics of the coarse-scale velocity and pres-
sure were solved and no flow transport problem was investigated. In [49], a
projection method for the solution of stochastic mixed multiscale finite ele-
ment method was introduced where the velocity solution was projected onto
a multiscale velocity basis functions which are precomputed from an arbi-
trary number of random realizations. It generally involves the solution of a
large linear system of equations to find the projection coefficients if the num-
ber of realizations is large. For each new permeability sample, this method
needs to solve one coarse-scale problem again and is generally computation-
ally expensive. In addition, this method cannot provide the statistics of the
saturation directly and thus this information was not reported in their work.
In [50], this framework was used to sample the permeability given measure-
ments within the Markov chain Monte Carlo method (MCMC) framework and
again no statistics of the saturation were reported. However, in real reservoir
engineering, we are primarily interested in mean behavior and a measure of
uncertainty, e.g. standard deviation, in the saturation of each phase. By using
the adaptive HDMR and ASGC developed in [43], we can obtain not only a
surrogate model for the saturation profile but also can extract the statistics
of the saturation easily. Therefore, the novelle contributions of this paper are
as follows: (1) We develop a new mixed finite element version of the heteroge-
neous multiscale method for the simulation of flow through porous media in
the spatial domain; (2) We utilize the newly developed HDMR technique to
address the curse of dimensionality that occurs naturally in this problem due
to the heterogeneity of the permeability; (3) Finally, we investigate the effect
of the stochastic permeability on various statistics of the saturation using the
recently developed adaptive HDMR method.

This paper is organized as follows: In the next section, the mathematical frame-
work of stochastic porous media flow problem in the mixed form is considered.
In Section 3.2, the ASGC and HDMR methods for solving SPDEs are briefly
reviewed. In Section 4, the theory of MxHMM is developed. Various examples
with deterministic and stochastic permeability are given in Section 5. Finally,
concluding remarks are provided in Section 6.

2 Problem definition

In this section, we follow the notation in [42]. Let us define a complete probabil-
ity space (Ω,F ,P) with sample space Ω which corresponds to the outcomes of
some experiments, F ⊂ 2Ω is the σ-algebra of subsets in Ω and P : F → [0, 1]
is the probability measure. Also, let us define D as a d-dimensional bounded
domain D ⊂ R

d (d = 2, 3) with boundary ∂D. The governing equations for
immiscible and incompressible two-phase flow in porous media consists of an

5



elliptic equation for fluid pressure and a transport equation for the movement
of fluid phases. For simplicity, we will neglect the effects from gravity, capil-
lary forces and assume that the porosity is a constant. The two phases will be
referred to as water and oil, denoted as w and o, respectively. The total Darcy
velocity u and the pressure p satisfy for P-almost everywhere (a.e.) in Ω the
following SPDEs [17]

∇ · u = q̄, u = −K(x, ω)λt∇p, ∀x ∈ D, (1)

with the following boundary conditions

p = p̄ on ∂Dp, u · n = ū on ∂Du. (2)

The total velocity u = uo + uw is a sum of the velocities of oil uo and water
uw. q̄ is a volumetric source term which is assumed 0 throughout the paper.
The random permeability tensor K is assumed to be diagonal and uniformly
positive definite. In addition, we will assume K is a stochastic scalar function.
The total mobility is given by λt = λw + λo, where λi models the reduced
mobility of phase i due to the presence of the other phase. Without loss of
generality, we assume that the boundary conditions are deterministic and that
the Neumman condition is homogeneous, ū = 0 on ∂Du.

Furthermore, to assess the quality of the multiscale model, the unit mobility
ratio displacement model is used, i.e. λw = S, λo = 1 − S and hence λt = 1,
where S is the water saturation. Under these assumptions, the water saturation
equation is given by

∂S(x, t, ω)

∂t
+ u · ∇S(x, t, ω) = 0, ∀x ∈ D, t ∈ [0, T ]. (3)

Since the permeability K is a stochastic function, all the unknowns p, u and S
are also stochastic. Therefore, our complete stochastic model is: Find stochas-
tic functions u : Ω × D → R, p : Ω × D → R and S : Ω × [0, T ] × D → R for
P-almost every where (a.e.) ω ∈ Ω such that the following equations hold:

∇ · u(x, ω)= 0, u(x, ω) = −K(x, ω)∇p(x, ω) ∀x ∈ D, (4)

∂S(x, t, ω)

∂t
+u(x, t, ω) · ∇S(x, t, ω) = 0, ∀x ∈ D, t ∈ [0, T ], (5)

with the boundary conditions

p = p̄ on ∂Dp, u · n = 0 on ∂Du, (6)

together with appropriate initial and boundary conditions for S. Computa-
tion with this model is much more efficient than using the actual two-phase
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flow model because the pressure and saturation equations are effectively de-
coupled. Throughout this paper, the Darcy velocity u is first computed using
the mixed finite element heterogeneous multiscale method developed in Sec-
tion 4.1 and then the saturation equation is solved using a upwinding finite
element scheme [51] in Section 4.2. Although these equations differ from the
actual flow equations, they do capture many important aspects of two-phase
flow problems. Specifically, the effects of the heterogeneity are often similar in
the unit mobility and two-phase flow problems [52].

2.1 The finite-dimensional noise assumption and the Karhunen-Loève ex-
pansion

We employ the ‘finite-dimensional noise assumption’ [39] and using the Karhunen-
Loève (K-L) expansion [53] we approximate any second-order stochastic pro-
cess with a finite-dimensional representation.

Geostatistical models often suggest that the permeability field is a weakly or
second-order stationary random field such that the mean log-permeability is
constant and its covariance function only depends on the relative distance of
two points rather than their actual location [7]. Denote G(x, ω) = log(K) and
its covariance function by RG(x1,x2), where x1 and x2 are spatial coordi-
nates. By definition, the covariance function is real, symmetric, and positive
definite. All its eigenfunctions are mutually orthonormal and form a complete
set spanning the function space to which G(x, ω) belongs. Then the truncated
K-L expansion takes the following form:

G(x, ω) = E[G(x)] +
N
∑

i=1

√

λiφi(x)Yi(ω), (7)

where {Yi(ω)}N
i=1 are uncorrelated random variables. Also, φi(x) and λi are

the eigenfunctions and eigenvalues of the correlation function, respectively.
They are the solutions of the following eigenvalue problem:

∫

D
RG(x1,x2)φi(x2)dx2 = λiφi(x1). (8)

The number of terms needed to approximate a stochastic process depends on
the decay rate of the eigenvalues. Generally, a higher-correlation length would
lead to a rapid decay of the eigenvalues.

When using the K-L expansion, we here assume that we obtain a set of mu-
tually independent random variables. Denote the probability density func-
tions of {Yi(ω)}N

i=1 as ρi, i = 1, . . . , N . Let Γi be the image of Yi. Then
ρ(Y) =

∏N
i=1 ρi(Yi) is the joint probability density of Y = (Y1, · · · , YN) with
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support Γ ≡ Γ1 × Γ2 × · · · × ΓN ∈ R
N . Then the stochastic log permeability

can be represented by G(x, ω) = G(x, Y1, . . . , YN) = G(x,Y ).

2.2 Stochastic variational formulation

By using the Doob-Dynkin lemma [42], the solutions of Eqs. (4) and (5) can
be described by the same set of random variables {Yi(ω)}N

i=1. Following [48],
we define appropriate function spaces that encode variations of the function
in the physical domain D and in the stochastic space Γ.

In the physical space, we introduce the following common functional spaces [16,48]:

W ≡ L2(D) =
{

p :
∫

D
|p|2dx =‖ p ‖2

L2(D)< +∞
}

, (9)

with inner product

(p, q) ≡ (p, q)L2(D) :=
∫

D
p q dx, p, q ∈ L2(D), (10)

and
H(div, D) =

{

u : u ∈ (L2(D))2,∇ · u ∈ L2(D)
}

, (11)

with inner product

(u,v) ≡ (u,v)H(div,D) :=
∫

D
u · v dx, u,v ∈ H(div, D). (12)

We will also make use of the following space:

V ≡ H0,u(div, D) = {u : u ∈ H(div, D),u · n = 0} . (13)

The duality product is defined as:

〈ū, p̄〉 ≡ 〈ū, p̄〉∂Dp
:=
∫

∂Dp

ū p̄ dx, ū ∈ H1/2(D), p̄ ∈ H−1/2(D). (14)

The functional space in Γ is defined as follows:

U ≡ L2
ρ(Γ) =

{

p :
(
∫

Γ
|p(Y )|2ρ(Y )dY

)1/2

< ∞

}

. (15)

By taking its tensor product with the previous deterministic spaces, one can
form the stochastic functional spaces:

W = U ⊗ W, V = U ⊗ V. (16)

Multiplication of Eqs. (4) and (5) by appropriate test functions and integration
by parts leads to the following weak formulations: Find u ∈ H, p ∈ W such
that
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∫

Γ
(K−1u,v)ρ(Y )dY −

∫

Γ
(∇ · v, p)ρ(Y )dY

=−
∫

Γ
〈v · n, p̄〉ρ(Y )dY , ∀v ∈ V, (17)

∫

Γ
(l,∇ · u)ρ(Y )dY = 0, ∀l ∈ W, (18)

and S ∈ W for each t ∈ [0, T ] such that

∫

Γ

(

∂S

∂t
, q

)

ρ(Y )dY +
∫

Γ
(u · ∇S, q)ρ(Y )dY = 0, ∀q ∈ W. (19)

We assume without loss of generality that the support of the random variables
Yi is Γi = [0, 1] for i = 1, · · · , N and thus the bounded stochastic space is a
N -hypercube Γ = [0, 1]N , since any bounded stochastic space can always be
mapped to the above hypercube.

3 Adaptive sparse grid collocation method (ASGC) and High di-
mensional model representation technique (HDMR) for the so-
lution of SPDEs

The original infinite-dimensional stochastic problem is now restated as a fi-
nite N -dimensional problem. Then we can apply any stochastic method in
the random space and the resulting equations become a set of deterministic
equations in the physical space that can be solved by any standard deter-
ministic discretization technique, e.g. the finite element method. The solution
to the above SPDEs Eqs. (17)-(19) can be regarded as stochastic functions
taking real values in the stochastic space Γ. For example, we can consider the
pressure as a stochastic function p : Γ → R and we use the notation p(Y )
to highlight the dependence on the randomness. Then it can be shown that
the weak formulation Eqs. (17)-(19) is equivalent to [38]: for a.e. ρ ∈ Γ the
following deterministic weak form equations hold:

(K−1u,v) − (p,∇ · v) =−〈p̄, v · n〉, ∀v ∈ V (20)

(l,∇ · u) = 0, ∀l ∈ W (21)
(

∂S

∂t
, q

)

+ (q,u · ∇S) = 0, , ∀q ∈ W (22)

This nature is utilized by the stochastic collocation method which constructs
the interpolant of the stochastic function in Γ using only the solutions to the
above deterministic problems at chosen sample points.
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3.1 Adaptive sparse grid collocation method (ASGC)

In this section, we briefly review the development of the ASGC strategy. For
more details, the interested reader is referred to [42].

The basic idea of this method is to employ a finite element approximation for
the spatial domain and approximate the multi-dimensional stochastic space
Γ using interpolating functions on a set of collocation points {Y i}

M
i=1 ∈ Γ.

Suppose we can find a finite element approximate solution S to the deter-
ministic solution of the problem in Eqs. (20)-(22), we are then interested in
constructing an interpolant of S by using linear combinations of the solutions
S(·,Y i). The interpolation is constructed by using the so called sparse grid
interpolation method based on the Smolyak algorithm [42]. In the context of
incorporating adaptivity, we have chosen the collocation points based on the
Newton-Cotes formulae using equidistant support nodes. The corresponding
basis function is the multi-linear basis function constructed from the tensor
product of the corresponding one-dimensional functions.

Any function f : D × Γ → R can now be approximated by the following
reduced form:

f
(

x,Y
)

=
∑

‖i‖6N+r

∑

j

wi
j(x) · ai

j(Y ), (23)

where the multi-index i = (i1, . . . , iN) ∈ N
N , the multi-index j = (j1, . . . , jN ) ∈

N
N and ‖i‖ = i1 + · · · + iN . r is the sparse grid interpolation level and the

summation is over collocation points selected in a hierarchical framework [42].
Here, wi

j is the hierarchical surplus, which is just the difference between the
function value at the current point and interpolation value from the coarser
grid. The hierarchical surplus is a natural candidate for error control and
implementation of adaptivity.

After obtaining the expression in Eq. (23), it is also easy to extract the statis-
tics [42]. The mean of the random solution can be evaluated as follows:

E [f (x)] =
∑

‖i‖6N+r

∑

j

wi
j(x) ·

∫

Γ
ai
j(Y )dY , (24)

where the probability density function ρ(Y ) is 1 since the stochastic space
is a unit hypercube [0, 1]N . As shown in [42], the multi-dimensional integral
is simply the product of the 1D integrals which can be computed analyti-

cally. Denoting
∫

Γ
ai
j(Y )dY = I i

j , we can rewrite Eq. (24) as Eq [f (x)] =
∑

‖i‖6N+r

∑

j w
i
j(x) · I i

j .
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We now define the error indicator as follows:

γi
j =

∥

∥

∥wi
j(x) · I i

j

∥

∥

∥

L2(D)
∥

∥

∥E‖i‖−N−1[f ]
∥

∥

∥

L2(D)

. (25)

Here, the L2 norm is defined in the spatial domain. This error indicator mea-
sures the contribution of each term in Eq. (24) to the integration value (mean)
relative to the overall integration value computed from the previous interpo-
lation level. In addition to the surpluses, it also incorporates information from
the basis functions. This makes the error γi

j to decrease to a sufficient small
value for a large interpolation level. Therefore, for a reasonable error thresh-
old, this error indicator guarantees that the refinement would stop at a certain
interpolation level.

The basic idea of adaptive sparse grid collocation (ASGC) method here is to
use the error indicator γi

j to detect the smoothness of the solution and refine
the hierarchical basis functions ai

j whose magnitude satisfies γi
j > ε, where ε

is a predefined adaptive refinement threshold. If this criterion is satisfied, we
simply add the 2N neighbor points of the current point to the sparse grid [42].

However, this method still suffers from the curse of dimensionality. In the next
section, a novel dimension decomposition method is reviewed to transform the
N -dimensional problem into several low-dimensional sub-problems.

3.2 High dimensional model representation (HDMR)

In this section, the basic concepts of HDMR are briefly reviewed following
closely the notation in [43]. For a detailed description of the theory applied to
stochastic systems, the interesting reader may refer to [43].

In order to alleviate the curse of dimensionality, we have combined ASGC
with the adaptive stochastic high dimensional model representation (HDMR)
technique. HDMR represents the model outputs as a finite hierarchical corre-
lated function expansion in terms of the stochastic inputs starting from lower-
order to higher-order component functions. In that work, the CUT-HDMR is
adopted to construct the response surface of the stochastic solution. Within
the framework of CUT-HDMR, a reference point Y =

(

Y 1, Y 2, . . . , Y N

)

is
first chosen. According to our past experience, the mean vector of the random
input Y is a good choice for the reference point. Then HDMR is given in a
compact form as [43]

f(Y ) =
∑

u⊆D

∑

v⊆u

(−1)|u|−|v|f(Y v)|Y =Y \Y v

, (26)
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for a given set u ⊆ D, where D := {1, . . . , N} denotes the set of coordinate
indices and we define f(Y ∅) = f(Y ). Here, Y v denotes the |v|-dimensional
vector containing those components of Y whose indices belong to the set v,
where |v| is the cardinality of the corresponding set v, i.e. Y v = (Yi)i∈v. The
notation Y = Y \ Y v means that the components of Y other than those
indices that belong to the set v are set equal to those of the reference point.
For example, if v = {1, 3, 5}, then |v| = 3 and f(Y v) is a function of only
three random variables Y1, Y3, Y5 while the other dimensions satisfy Yi = Y i

for i ∈ D and i /∈ v.

Therefore, the N -dimensional stochastic problem is transformed to several
lower-order |v|-dimensional problems f(Y v) which can be easily solved by
the ASGC as introduced in the last section:

f(Y ) =
∑

u⊆D

∑

v⊆u

(−1)|u|−|v|
∑

‖i‖6N+r

∑

j

wij
v(x) · ai

j(Y v), (27)

where ‖i‖ = i1 + · · · + i|v|, wij
v(x) are the hierarchical surpluses for different

sub-problems indexed by v and ai
j(Y v) is only a function of the coordinates

which belong to the set v. It is noted that the interpolation level r may be
different for each sub-problem according to their regularity along the particular
dimensions which is controlled by the error threshold ε.

In addition, it is also easy to extract statistics as introduced in Section 3.1 by
integrating directly the interpolating basis functions. Let us denote

Ju =
∑

v⊆u

(−1)|u|−|v|
∑

‖i‖6N+r

∑

j

wij
v(x) · I i

j , (28)

as the mean of the component function fu. Then the mean of the HDMR
expansion is simply E [f (Y )] =

∑

u⊆D Ju. To obtain the variance of the solu-
tion, we can similarly construct an approximation for u2 and use the formula
Var [u (x)] = E [u2(x)] − (E [u (x)])2.

It is noted that the solution method of each sub-problem is not limited to
ASGC. It is also possible to use the sparse grid based on Gauss quadrature
rule to integrate the component functions of the CUT-HDMR in order to
obtain the mean and the standard deviation directly. In this case, Eq. (28)
can be rewritten as

Ju =
∑

v⊆u

(−1)|u|−|v|
∑

‖i‖6N+r

∑

j

Ωij
v · f(x,Y i

j) (29)

where Ω is the quadrature weight and f(x,Y ) is the function value at the col-
location points. The advantage of this method is its higher accuracy than the
linear interpolation. However, it does not provide the function approximation.
In this work, we would also like to extend our previous ASGC formulation to
include the Gauss quadrature rule.
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As shown in [43], it is not necessary to compute all the terms in Eq. (26). We
can take only a subset S of all indices u ⊆ D while retaining the approxima-
tion accuracy. Therefore, we can define an interpolation formula ASf for the
approximation of f which is given by

ASf :=
∑

u∈S

A(fu). (30)

Here, A(fu) is the sparse grid interpolant of the component function fu and
ASf is the interpolant of the function f using the proposed method with the
index set S. It is common to refer to the terms {fu : |u| = m} collectively as
the “order-m terms”. Then the expansion order for the decomposition Eq. (30)
is defined as the maximum of m. Note that the number of collocation points
in this expansion is defined as the sum of the number of points for each sub-
problem from Eq. (27), i.e. M =

∑

u∈S Mu.

Based on this, we have also developed the adaptive version of HDMR to find
the optimal set S. A weight is defined for each expansion term as:

ηu =
‖Ju‖L2(D)

∥

∥

∥

∑

v∈S,|v|6|u|−1 Jv

∥

∥

∥

L2(D)

. (31)

We always construct the zeroth- and first-order HDMR expansion where the
computational cost is affordable even for very high-dimensions and only select
those terms whose weight is greater than a predefined error threshold θ1. Then
we define the important dimensions as those whose weights are larger than a
predefined error threshold θ1. Now, the set D in Eq. (26) only contains these
important dimensions instead of all the dimensions. However, not all the pos-
sible terms are computed. Instead, we adaptively construct higher-order com-
ponent functions increasingly from lower-order to higher-order. Similarly, the
important component functions are defined as those whose weights are larger
than the predefined error threshold θ1. We put all the important dimensions
and higher-order terms into a set T , which is called the important set. When
adaptively constructing HDMR for each new order, we only calculate the term
fu whose indices satisfy the admissibility relation:

u ∈ D and v ⊂ u ⇒ v ∈ T . (32)

In other words, among all the possible indices, we only want to find the terms
which can be computed using the previous known important component func-
tions. In this way, we find those terms which may have significant contribution
to the overall expansion while ignoring other trivial terms thus reducing the
computational cost for high-dimensional problems. In addition, if the relative
error between two consecutive orders is smaller than another threshold θ2,
the HDMR expansion is considered converged and the construction stops. For
more details, please refer to [43].
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4 Spatial finite element discretization

As stated in Section 3, in order to utilize the HDMR Eq. (27), we only need
to seek the solution (u, p, S) at each collocation point in the stochastic space
Γ. In other words, our goal is reduced to: for each permeability realization
K(i)(x) = K(x,Y i), i = 1, . . . , M , we solve the deterministic problem: find
u(i) ∈ V , p(i) ∈ W and S(i) ∈ W such that for i = 1, . . . , M

(K−1u(i),v) − (p(i),∇ · v) =−〈p̄, v · n〉, ∀v ∈ V, (33)

(l,∇ · u(i)) = 0, ∀l ∈ W, (34)
(

∂S(i)

∂t
, q

)

+ (q,u(i) · ∇S(i)) = 0, ∀q ∈ W. (35)

In this section, mixed finite element methods are introduced to solve the above
equations in the spatial domain. Since the pressure Eqs. (33) and (34) are
effectively decoupled from the saturation Eq. (35), we will first introduce the
multiscale method to find u, p and then use the upwinding finite element
method to find S. To simplify the notation, we will omit the superscript i and
assume the deterministic equations are satisfied for an arbitrary permeability
sample in the stochastic space.

4.1 Mixed finite element heterogeneous multiscale method (MxHMM)

In the porous media flow problem, the heterogeneity of the permeability field
will have a great impact on the global flow conditions. In order to resolve
the fine-scale velocity accurately with lower computational cost, a multiscale
method is needed. In addition, the mixed finite element method is also re-
quired to compute the velocity and pressure simultaneously, if we want to
have an accurate velocity and ensure mass conservation. We can identify at
least two main multiscale methods: multiscale finite element or finite volume
methods [7,9,11] and the variational multiscale methods [14,16]. In this sec-
tion, we will develop a new multiscale method which is based on the framework
of the heterogeneous multiscale method [22]. We present the discretization and
methodology for a two-dimensional system. Extension to three-dimensions is
straightforward.

Consider a partition, Th fo the domain D into non-overlapping elements ei,
Th =

⋃Nh
i=1 ei, where Nh is the number of elements of the grid. Define also

the skeleton of the partition, SPh =
⋃Mh

a=1 νa, where Mh is the number of
element faces denoted by νa. The partition Th is regarded as the fine-scale grid.
The multiscale permeability is defined as a cell-wise constant on this grid. To
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implement the multiscale method, we also consider a coarse-scale partition
of the same domain D. Denote this partition as Tc =

⋃Nc
i=1 Ei. Denote by

SPc =
⋃Mc

a=1 Λa the associated skeleton of the coarse-scale discretization. Here,
Nc is the number of coarse elements and Mc is the number of coarse element
faces denoted by Λa. In order to conserve the mass at the coarse-scale, we also
assume for simplicity that the partitions Th and Tc are nested, conforming
and consist of rectangular elements. Fig. 1 shows a fine grid (finer lines) and
a corresponding coarse grid (heavier lines).

( )a ( )b

Fig. 1. Schematic of the domain partition: (a) fine– and coarse–scale grids, (b)
fine–scale local region in one coarse element.

Now consider the finite dimensional subspaces on the coarse-scale Vc ∈ V and
Wc ∈ W . The mixed finite element method approximation of Eqs. (33)-(34)
on the coarse-scale reads: Find the coarse-scale (uc, pc) ∈ Vc × Wc such that

(K−1uc,vc) − (pc,∇ · vc)=−〈p0,vc · n〉, ∀ vc ∈ Vc, (36)

(lc,∇ · uc)= 0, ∀ lc ∈ Wc. (37)

Note that Vc and Wc should satisfy the discrete inf-sup condition [54]. In this
work, Vc is taken to be the lowest-order Raviart-Thomas space [8], RT0(Tc)
and Wc is taken to be the space of piece-wise constants on the coarse-scale
mesh, P0(Tc). Other choices can be found in [54]. Therefore, we define the
finite element space for the coarse-scale velocity as:

Vc =

{

uc : uc =
Mc
∑

a=1

ψc
au

c
a, uc

a = 0, ∀ Λa ∈ ∂Du

}

, (38)

where ψc
a is the RT0 basis functions on the uniform mesh of rectangular el-

ements associated with the coarse element face Λa. For a reference element
E = [xL

1 , xR
1 ] × [xL

2 , xR
2 ] with the area |E|, there are four vector RT0 basis

functions with non-zero support:
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ψc
1 =

[

(xR
1 − x1)/(xR

1 − xL
1 ), 0

]T
, ψc

2 =
[

0, (xR
2 − x2)/(xR

2 − xL
2 )
]T

, (39)

ψc
3 =

[

(x1 − xL
1 )/(xR

1 − xL
1 ), 0

]T
, ψc

4 =
[

0, (x2 − xL
2 )/(xR

2 − xL
2 )
]T

. (40)

The basis functions satisfy the properties such that ψc
i · nj = 1 if i = j,

otherwise ψc
i · nj = 0 for i, j = 1, . . . , 4. Therefore uc

a is value of the coarse-
scale flux at the middle point of the side Λa, i.e. uc ·na = uc

a, where na is the
unit outer normal to the interface Λa. The coarse-scale pressure approximation
is piecewise constant on the coarse-mesh and P0(Tc) is

Wc =

{

pc : pc =
Nc
∑

a=1

φc
ip

c
i

}

, (41)

where φc
i is the coarse-scale pressure basis function for the coarse element i

defined as

φc
i(x) =











1, if x ∈ Ei,

0, if x /∈ Ei.
(42)

pc
i is the corresponding pressure degree of freedom (the average pressure in

coarse element Ei).

It is obvious that all the fine-scale information is included in the bilinear form
(K−1uc,vc). Denote A = (Aij) the global matrix for the bilinear form, where

Aij =
∫

D
ψc

i(x) · K−1(x)ψc
j(x) dx, (43)

We could evaluate Eq. (43) by the 2 × 2 Gauss quadrature rule: let

fij(x) = ψc
i(x) · K−1(x)ψc

j(x), (44)

then

Aij =
∫

D
fij dx ≃

∑

E∈Tc

∑

ξk∈E

τkfij(ξk), (45)

where ξk and τk, k = 1, . . . , 4 are the quadrature points and weights (including
the determinant of the Jacobian matrix) in the coarse element E, respectively.
It is obvious that any realization of the permeability field at the quadrature
point K (ξk) is not able to capture the full information at the subgrid scale in
the coarse element since the size of the coarse element is much larger than the
characteristic length scale of the multiscale permeability field. Therefore, we
need to modify the bilinear form Eq. (44) at the quadrature point ξk following
the framework of the heterogeneous multiscale method [21,26] as:

fij(ξk) =
1

|Eδk
|

∫

Eδk

ũik(x) · K−1ũjk(x) dx, k = 1, . . . , 4, (46)
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where ũik(x), i = 1, . . . , 4 is the solution to the following local subgrid problem
in the sampling domain Eδk

⊂ E, k = 1, . . . , 4:

∇ · ũik(x) = 0, ũik(x) = −K∇p̃ik(x), ∀ x ∈ Eδk
, (47)

with appropriate boundary conditions which we will discuss below. p̃i(x) can
be considered as the subgrid pressure.

First, we will discuss the choice of the sampling domain Eδk
of the subgrid

problem. In the original problem definition of the FeHMM [21,26], the coeffi-
cient of the elliptic equation (here K) is assumed to be periodic. Therefore, the
sampling domain was taken around each quadrature point as Eδk

= ξk + δI,
where I = (−1/2, 1/2)2 and δ is equal to one period of the coefficient in the
elliptic equation, as in Fig. 2(a). However, in general, the permeability is not
periodic. If the sampling domain is too small, one cannot capture enough in-
formation on the subgrid scale. According to the numerical results in [55], the
larger the size of the sampling domain is, the more accurate the computed
result is. Therefore, we would like to take the sampling domain to be the same
as the coarse element, i.e. Eδk

= E, ∂Eδk
= ∂E as in Fig. 2(b). In addition,

we also assume that the fine grid within each coarse element is the same as
the fine-scale grid Th, where the permeability is defined, see Fig. 1(b). In this
way, we can ensure global continuity of the flux across the coarse element.

k
ξ

k

E
δ

E k

E E
δ
=

• •

• •

• •

• •

• •

• •

•

•

•

•

k
ξ

δ

• •

• •

• •

• •

• •

• •

• •

• •

( )a ( )b

Fig. 2. (a) Schematic of the original HMM method, where the sampling domain
is around the quadrature point. (b) Schematic of the proposed MxHMM method,
where the sampling domain is the same as the coarse element.

Remark 1. Unlike the mixed multiscale finite element method [9], where
the subgrid problem is limited to the coarse element, the advantage of the
heterogeneous multiscale method here is that the sampling domain is not
limited to the coarse element. In fact, it can be chosen arbitrarily to include
as many coarse elements as necessary. However, in the present work we still
solve the subgrid problem in only one coarse element. The effect of the size of
the sampling domain is reserved for later work.

Hence, all the subgrid problems are solved within the same coarse element.
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The only difference is the applied boundary condition. The boundary condi-
tion of the problem in Eq. (47) plays a significant role in the accuracy of the
multiscale method as discussed in [55], where three different boundary con-
ditions are considered: the periodic boundary condition, Dirichilet boundary
condition, and the Neumann boundary condition. However, when mixed finite
element formulation is used on the coarse-scale, only the Neumann bound-
ary condition is applicable here. In [26], the following Neumann boundary
condition is proposed:

ũik · n∂E = ψc
i(ξk) · n∂E, on ∂E, (48)

where ψc
i(ξk) denotes the value of the i-th coarse-scale RT0 finite element basis

function at the quadrature point ξk, k = 1, . . . , 4 and n∂E denotes the unit
outer normal of the coarse element boundary ∂E. According to the definition
of RT0 basis function in Eqs. (39)-(40), this boundary condition applies a
uniform flow with magnitude ψc

i(ξk) from one side to the opposite side while
keeping no-flow conditions on the other two sides. The example of ψ1(ξ1)
is shown in Fig. 3. However, this boundary condition only reflects the local
heterogeneity structure within the current coarse element. It does not contain
the flow condition across the coarse element interface which is often important
in guaranteeing the continuity of flux on the coarse-scale. Therefore, we would
like to propose a new boundary condition which reflects the heterogeneous
structure across the coarse element boundary.

For a fine-scale element interface νa, denote the two adjacent fine-scale ele-
ments as ei and ej , i.e. νa = ei

⋂

ej. According to two-point flux approximation
finite volume method, if the element interface is in the y-direction, the element
interface transmissibility in the x-dimension is defined by [56]:

Tνa
= 2|νa|

(

∆xi

Ki

+
∆xj

Kj

)−1

, (49)

where |νa| is the length of the interface, ∆xi denote the length of element ei in
the x-coordinate direction, and Ki is the permeability in element ei. Similar
expression can be defined in the y-dimension. The fine-scale transmissibility
of interface νa reflects the flow condition across elements. Denote the total
applied flux along the coarse element interface Λ due to the value of the i-th
coarse-scale basis functions at the k-th quadrature point as

Qik =
∫

Λ
ψc

i(ξk) · n ds = |Λ|ψc
i(ξk) · nΛ. (50)

In this work, we consider rectangular elements oriented along the coordinate
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axes. Hence, we modify the boundary condition Eq. (48) to:

ũik ·n|Λ = Qik ·
Tνa

∑

νb⊂Λ Tνb
|νb|

, on Λ ⊂ ∂E, (51)

where Qik is defined in Eq. (50) and Tνa
is the fine-scale transmissibility of

interface νa ⊂ Λ as defined in Eq. (49). See for example Q11 in Fig. 3(b). In
the equation above, Tνa

is the fine-scale transmissibility of interface as defined
in Eq. (50) for an interface in the y-direction. When the interface is in the
x-direction, we change the definition of Tνa

accordingly. Therefore, the sum of
the flux applied on the fine-scale element is equal to the total flux applied on
the same coarse element boundary. We just redistribute the total flux on the
coarse-scale element boundary according to the ability to transport the flow
at the interface of each fine-scale element. This is clearly a better choice for
boundary condition since it determines the flow conditions across the inter-
block boundaries.

4
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Fig. 3. Schematic of different boundary conditions. (a) The uniform boundary con-
dition, (b) The modified boundary condition where the flux is scaled according to
the fine-scale transmissibilities.

Finally, our subgrid problem in a coarse-element E is defined as follows: For
each quadrature point ξk, k = 1, . . . , 4, we seek the solution ũik to the following
subgrid problem for each coarse-scale RT0 basis function ψc

i , i = 1, . . . , 4:

∇ũik(x) = 0, ũik(x) = −K∇p̃ik(x), ∀ x ∈ E, (52)

with the Neumman boundary condition defined in Eq. (51).
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For convenience, we will define the corresponding modified bilinear form as:
for any uc,vc ∈ Vc

Ah(K
−1uc,vc) :=

∑

E∈Tc

4
∑

k=1

τk

|E|

∫

E
U k(x) · K−1V k(x) dx, (53)

where U and V are defined through the subgrid problems. The assembly of
this bilinear form will be detailed in Section 4.2. Therefore, the MxHMM ver-
sion of Eqs. (36)-(37) on the coarse-scale reads: Find the coarse-scale (uc, pc) ∈
Vc × Wc such that

Ah(K
−1uc,vc) − (pc,∇ · vc) =−〈p0,vc · n〉, ∀ vc ∈ Vc, (54)

(lc,∇ · uc) = 0, ∀ lc ∈ Wc, (55)

with the boundary condition

pc = p̄ on ∂Dp, uc · n = 0 on ∂Du. (56)

The major difference between Eqs. (36)-(37) and Eqs. (54)-(55) lies in the bi-
linear form Ah(·, ·), which needs solution of the local subgrid problem Eq. (52).
It is through these subgrid problems and the mixed formulation that the ef-
fect of the heterogeneity on coarse-scale solutions can be correctly captured.
Unfortunately, it is not trivial to analyze this multiscale method in a general
case, but convergence results have been obtained using the homogenization
theory in the case of periodic coefficients [26].

4.1.1 Solution of the subgrid problems and assembly of the bilinear form

In general, the subgrid problem Eq. (52) can be solved through the stan-
dard or mixed finite element method. In the present setting, since we are
only interested in the velocity, the mixed finite element method is preferred.
Let Eh = Th(E) denote the fine grid defined over one coarse element E. As
mentioned before, it coincides with the fine-scale grid Th. The subgrid-scale
velocity functional spaces will be defined on the fine grid Eh of each coarse
element:

VE =







ũ : ũ =
ME
∑

a=1

ψh
aũ

h
a, ψh

a ∈ RT0(Eh)







, (57)

where ME is the number of edges in E, and the pressure space is defined
similarly:

WE =







p̃ : p̃ =
NE
∑

a=1

φh
i p̃

h
i , φh

i ∈ P0(Eh)







, (58)

where NE is the number of elements in E. It is noted that, as the Neumann
boundary conditions in Eq. (51) are imposed on all boundaries of the coarse
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element E, an extra constraint must be added to make the subgrid problem
well posed. In our implementation, the pressure is prescribed to 0 at one of
the elements in Eh.

The mixed finite element method approximation of Eq. (52) in coarse element
Ei on the subgrid-scale grid reads: Find the subgrid-scale (ũ, p̃) ∈ VEi

× WEi

such that

(K−1ũ, ṽ) − (p̃,∇ · ṽ)= 0, ∀ ṽ ∈ VEi
, (59)

(l̃,∇ · ṽ)= 0, ∀ l̃ ∈ WEi
, (60)

with the boundary condition Eq. (51). It is noted that for each coarse element,
we need to solve 4 (number of quadrature points) × 4 (number of basis func-
tions) = 16 subgrid problems. However, the only difference between them are
in the boundary conditions. Therefore, we only need to assemble the stiffness
matrix once and solve the same algebraic problem with different right hand
vectors.

Following a standard assembly process for the global matrix of the coarse-
scale bilinear form Eq. (53), we compute the contribution AE to the global
matrix associated with the coarse element E, where AE is a 4 × 4 matrix.
Assume the solution of the subgrid problem at the k-th Gaussian point can
be written as ũik =

∑ME

j=1 ck
ijψ

h
j , i = 1, . . . , 4. We can write all the solutions as

a 4 × NE matrix, Ck = (ck
ij) where the i-th row contains the subgrid solution

corresponding to the i-th coarse-scale basis function ψc
i . Therefore, the value

of AE from the k-th Gauss point can be denoted as Ak
E = (ak

E)ij , where

(

ak
E

)

ij
=

τk

|E|
cil

∫

E
K−1ψh

l ·ψ
h
mdx cjm. (61)

Denoting the bilinear form matrix from the subgrid-scale problem as Bk =
(bk

lm), bk
lm =

∫

E K−1ψh
l ·ψ

h
mdx, we can write:

AE =
4
∑

k=1

τk

|E|
CkB

k(Ck)
T . (62)

Finally, we would like to comment on the solution of the linear systems result-
ing from the mixed finite element discretization. The linear system is indefinite,
and it is difficult to solve using a common iterative method. In our implemen-
tation, we use the Schur complement matrix to solve the pressure first and
then solve the velocity [10]. The linear system is solved using preconditioned
conjugate gradient method. All the implementations are based on the data
structure of the numerical library PETSc [57].
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4.2 Reconstruction of the fine-scale velocity and solution of transport equa-
tion

So far we have described the development of the mixed finite element heteroge-
neous multiscale method for the solution of the coarse-scale velocity. However,
in order to simulate the transport equation accurately, we need to reconstruct
the fine-scale velocity using the coarse-scale velocity and the subgrid perme-
ability. It is noted that the coarse-scale velocity is not conservative at the
fine-scale. In order to obtain a mass-conservative fine-scale velocity, we solve
Darcy’s equation within each coarse element E using Neumann boundary con-
dition given by the coarse-scale flux along the coarse-element boundary. The
coarse-scale flux, denoted by Qc is directly given as the solution of the sys-
tem of linear equations from the coarse-scale discretization. That is, for each
E ∈ Tc, one solves the fine-scale velocity uh inside E by [17,56]

∇ · uh = 0, uh = −K∇ph, ∀x ∈ E, (63)

with the boundary condition similar to the one used in Eq. (51):

uh · n|Λ = Qc ·
Tνa

∑

νb⊂Λ Tνb
|νb|

, on Λ ⊂ ∂E, (64)

where Qc is the coarse-scale flux across the coarse element interface Λ, and
Tνa

is the fine-scale transmissibility of interface νa ⊂ Λ. Since mixed finite
element method to solve the coarse-scale equations, the coarse-scale flux Qc is
obtained directly. Similar to the subgrid problem, Neumann boundary condi-
tion is applied on all the boundaries of the coarse element. To obtain a unique
solution of the above problem, the pressure is fixed to the coarse-scale pres-
sure pc in the center element of the mesh Eh. As indicated in [17,56,58], this
reconstruction step guarantees the continuity of the flux across the fine-scale
elements between two coarse blocks and accounts for subgrid heterogeneity.
It also forces the sum of the fine grid fluxes to be equal to the corresponding
coarse-scale flux. In this way, the resulting fine-scale velocity is conservative
on fine-scale grid as well as the coarse-scale grid.

For the solution of the saturation equation, we use the upwinding finite element
method [7,51], which is equivalent to the standard upstream weighted finite
volume method. We also approximate the saturation as a piecewise constant
in each fine-scale element e, P0(Th), the same as the pressure space. Given
the discrete reconstructed fine-scale velocity field uh, for a fine-scale element
e ∈ Th. We define the inflow boundary of the element as ∂e−, if uh ·n < 0 on
∂e− and similarly the outflow boundary as ∂e+, if uh ·n > 0 on ∂e+. For any
piecewise constant function Sh over the mesh Th, the upwinding value on ∂e
is defined as S̃h and is equal to the interior trace of Sh if on ∂e+ and equal
to the exterior trace of Sh if on ∂e−. In addition, we also assume S̃h = 0 on
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∂e−
⋂

∂D.

Therefore, the weak formulation of the upwinding scheme is to find Sh ∈ Wh

such that
∫

D

∂Sh

∂t
qh dx+

∑

e∈Th

∫

∂e
(uh · n)S̃hqh ds = 0, ∀qh ∈ Wh. (65)

Let ∆t be the time step and denote by Sk
i the approximation of the water

saturation in fine-scale element ei at time tk. Then the discrete form of the
saturation Eq. (65) is:

Sk+1
i +

∆t

|ei|

∑

j 6=i

fij(S
k+1)qij = Sk

i . (66)

Here |ei| is the area of the element ei. fij(S) = max{sign(qij)Si,−sign(qij)Sj}
is the upwinding water saturation for the interface νij = ∂ei

⋂

∂ej . Finally, the
flux across the boundary is qij =

∫

νij
uh ·nij ds where nij is the unit normal to

νij pointing from ei to ej . It is noted that in Eq. (66), only the flux qij on the
each interface is required. This value is directly computed as the solution from
our multiscale approach. This is the main reason why the method discussed
here is better than the stabilized conforming finite element method [59].

It is emphasized again that we consider the transport problem with unit mo-
bility ratio, so the saturation changes will not affect the pressure or velocity.
Therefore, we can first compute the fine-scale velocity with our multiscale ap-
proach and then solve the transport equation. The flow rate of produced oil
at the outlet boundary is denotes as qo and the flow rate of produced water
qw. To assess the quality of our multiscale approach, we will use the so called
water cut curve F , which defines the fraction of water in the produced fluid,
i.e., F = qw/(qw + qo) as a function of time measured in pore volume injected
(PVI). The water-cut is defined as

F (t) =

∫

∂Dout(uh ·n)S ds
∫

∂Dout(uh ·n) ds
, (67)

where ∂Dout refers to the part of the boundary with outer flow, i.e. uh ·n > 0.
PVI represents dimensionless time and is computed as

PVI =
∫

Q dt/Vp, (68)

where Vp is the total pore volume of the system, which is equal to the area of
the domain D here and Q =

∫

∂Dout(uh · n) ds is the total flow rate.

The complete schematic of the stochastic multiscale method for porous media
flow is illustrated in Fig. 4.
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Fig. 4. Schematic of the developed stochastic multsicale method for porous media
flow.

5 Numerical Examples

In the first two examples, we solve the problem with deterministic permeabil-
ity in order to validate the newly developed multiscale method. In the third
example, the complete stochastic problem with a known covariance function
is addressed.

5.1 Simulation in realistic two-dimensional reservoirs

This test case is a two-dimensional problem with a highly heterogeneous per-
meability. The permeability field shown in Fig. 5 is taken from the top layer
of the 10-th SPE comparative solution project [60]. The fine grid on which
the permeability is defined consists of 60 × 220 gridblocks. It has Dirichlet
boundary conditions p̄ = 100 on {x2 = 0}, p̄ = 0 on {x2 = 220} and Neumann
boundary conditions u · n = 0 on both {x1 = 0}, {x1 = 60}. We also im-
pose zero initial condition for saturation S(x, 0) = 0 and boundary condition
S(x, t) = 1 on {x2 = 0}.

The reference solution is computed on the fine-scale grid using single-scale
mixed finite element method directly, as shown in Fig. 6(a) and Fig. 7(a). We
also show the solutions obtained with the MxHMM method on various coarse
grids in Figs. 6 and 7. It is seen that the flow focuses along the region with
higher permeability while bypassing the low-permeability areas. At the same
time, the velocity field displays significant small-scale structure correspond-
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100p =

Fig. 5. Logarithm of the permeability field from the the top layer of the 10-th SPE
model, which is defined on 60 × 220 fine grid.

ing to the spatial permeability variations. The multiscale solution successfully
captures all the main characters of the fine-scale results and compares very
well with the fine-scale solution, with the two results being quite difficult to
distinguish visually. As a direct measure of the error in the computed velocity

field, we consider the L2−norm: ‖u‖2 = (
∫

D
u · u dx)1/2, where the corre-

sponding relative error is given as δ(u) = ‖uref − ums‖/‖uref‖. The result
is given in Table 1. In general, the error is larger with coarser grid which is
possibly due to some large local error in high permeability region where the
velocity changes quickly.

However, for reservoir simulation the most crucial factor is the transport prop-
erties of a velocity field. That is, a large local error in the velocity field may
not be crucial as long as the overall transport properties are correct. There-
fore, we give the contour plots of the saturation at time 0.4 PVI for various
coarse grids in Fig. 8. The four multiscale results compare very well with
the reference solution. To assess the accuracy of the transport properties,
we measure the relative difference in the saturation profile at a given time:

δ(S) = (
∫

D
|Sref−Sms|

2 dx)1/2/(
∫

D
|Sref|

2 dx)1/2. The result is given in Table 1.

It is seen that although the corresponding velocity error is larger for the same
coarse grid, the saturation error is significantly smaller.

Finally, we consider the water cut, which is shown in Fig. 9. Once again,
the results compare well with the reference solution. Here, we measure the
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( )a Fine Scale ( ) 30 110b × ( )15 55c × ( ) 10 44d × ( ) 6 22e ×

Fig. 6. Contour plots of the x-velocity component for various meshes: (a) 60 × 220
fine-scale grid, (b) 30 × 110 coarse grid, (c) 15 × 55 coarse grid, (d) 10 × 44 coarse
grid, (e) 6 × 22 coarse grid.

( )a Fine Scale ( ) 30 110b × ( )15 55c × ( ) 10 44d × ( ) 6 22e ×

Fig. 7. Contour plots of the y-velocity component for various meshes: (a) 60 × 220
fine-scale grid, (b) 30 × 110 coarse grid, (c) 15 × 55 coarse grid, (d) 10 × 44 coarse
grid, (e) 6 × 22 coarse grid.

maximum error as δ(F ) = maxt>0|Fref(t) − Fms(t)|. The result is shown in
Table 1, where the error is quite small. Note that this is a quite strict measure,
since the water cut curves tend to be steep right after breakthrough, and thus
a small deviation in breakthrough time may give a large value in the error
measure.

Overall, through this example, it is shown that the introduced multiscale
method is quite robust and accurate for different mesh discretizations.
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( )a Fine Scale ( ) 30 110b × ( )15 55c × ( ) 10 44d × ( ) 6 22e ×

Fig. 8. Contour plots of Saturation at 0.4 PVI: (a) 60 × 220 fine-scale grid, (b)
30×110 coarse grid, (c) 15×55 coarse grid, (d) 10×44 coarse grid, (e) 6×22 coarse
grid.
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Fig. 9. Water cut curves for various coarse grids.

Table 1
Relative errors for various coarse grids in Example 1.

Errors 30 × 110 15 × 55 10 × 44 6 × 22

δ(u) 0.112 0.159 0.170 0.234

δ(S) 0.025 0.049 0.067 0.124

δ(F ) 0.0033 0.0019 0.0101 0.0165

5.2 Simulation in a realization sample from a random permeability filed

In this section, we consider only a sample realization from a random perme-
ability field, which can be considered as a deterministic run at a collocation
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100p = 0p =

Fig. 10. Logarithm of the permeability field from one sample of a log-normal per-
meability filed defined on 100 × 100 fine-scale grid.

point in a stochastic simulation. The permeability is defined on a 100 × 100
fine-scale grid, which is shown in Fig. 10. Flow is induced from left-to-right
with Dirichlet boundary conditions p̄ = 100 on {x1 = 0}, p̄ = 0 on {x1 = 100}
and no-flow homogeneous Neumann boundary conditions on the other two
edges. We also impose zero initial condition for saturation S(x, 0) = 0 and
boundary condition S(x, t) = 1 on the inflow boundary {x1 = 0}. The refer-
ence solution is again taken from the single-scale mixed finite element on the
fine-scale grid directly. All the errors are defined the same as before.

In Figs. 11 and 12, we show the velocity contour plots of the reference solution
and the multiscale solution on a 25×25 coarse grid. The flow tries to go through
the high permeable regions and bypass the low permeable regions, which is
clearly reflected in the saturation plot at time 0.4 PVI as shown in Fig. 13.
All the three figures compare well with the reference solutions. The relative
errors are shown in Table 2. We note the relatively small saturation errors
compared with the large velocity errors, which again confirms that the large
local velocity errors may not reflect the overall accuracy of the saturation
results as long as the multiscale method captures the major feature of the
underlying permeability field.

Water cut curves are shown in Fig. 14 and the maximum error is given in
Table 2. All the water cut curves are visually nearly the same. The two de-
terministic numerical examples successfully validate the introduced multiscale
model. Since the stochastic multiscale framework only requires repeated solu-
tion of the deterministic problems at different collocation points, it is expected
to also have accurate statistics of the solution in the stochastic simulation as
shown in the next example.
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( )a Fine Scale ( ) 25 25b ×

Fig. 11. Contour plots of the x-velocity component for (a) 100× 100 fine-scale grid,
(b) 25 × 25 coarse grid.

( )a Fine Scale ( ) 25 25b ×

Fig. 12. Contour plots of the y-velocity component for (a) 100× 100 fine-scale grid,
(b) 25 × 25 coarse grid.

Table 2
Relative errors for various coarse grids in Example 2.

Errors 50 × 50 25 × 25 20 × 20 10 × 10

δ(u) 0.060 0.156 0.183 0.324

δ(S) 0.019 0.065 0.089 0.182

δ(F ) 0.0017 0.0059 0.0149 0.0079

5.3 Simulation in random permeability field

In the last two examples, we have successfully verified the accuracy of our
newly developed multiscale solver. In this example, we investigate the statis-
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( )a Fine Scale ( ) 25 25b ×

Fig. 13. Contour plots of Saturation at 0.4 PVI: for (a) 100 × 100 fine-scale grid,
(b) 25 × 25 coarse grid.
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Fig. 14. Water cut curves for various coarse grids.

tical properties of the transport phenomena in random heterogeneous porous
media. The domain of interest is unit square [0, 1]2. Flow is still induced
from left-to-right with Dirichlet boundary conditions p̄ = 1 on {x1 = 0},
p̄ = 0 on {x1 = 1} and no-flow homogeneous Neumann boundary condi-
tions on the other two edges. We also impose zero initial condition for satura-
tion S(x, 0) = 0 and boundary condition S(x, t) = 1 on the inflow boundary
{x1 = 0}.

The log-permeability is taken as zero mean random field with a separable
exponential covariance function

Cov(x,y) = σ2exp

(

−
|x1 − y1|

L1

−
|x2 − y2|

L2

)

, (69)

where L1 and L2 are the correlation lengths in x and y direction, respectively.
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σ is the standard deviation of the random field. The K-L expansion is used to
parameterize the field as

Y(ω) = log (K(ω)) =
N
∑

i=1

√

λiφi(x)Yi, (70)

where the eigenvalues λi, i = 1, 2, . . . , and their corresponding eigenfunctions
φi, i = 1, 2, . . . , can be determined analytically as discussed in [36]. Different
probability distributions can be chosen for Yi. The effects of log permeability
with uniform, beta and Gaussian distributions on the mean and standard
deviation of the output were investigated in [37], where the results showed that
the three distributions had close peak values of standard deviation. Therefore,
without losing the main feature of the output uncertainty, here Yi are assumed
as i.i.d. uniform random variables on [−1, 1].

In this problem, the fine-scale permeability is defined on 64× 64 grid and the
coarse grid is taken as 8 × 8. For comparison, the reference solution is taken
from 106 MC samples, where each direct problem is solved using the fine-scale
solver. The stochastic problem is solved using HDMR, where the solution of
each deterministic problem at the collocation points is from the multiscale
solver. In this way, the accuracy of both multiscale solver and HDMR can be
verified. In our previous work [43], the effects of the correlation length and
standard deviation have been studied thoroughly. Thus, here we will fix the
standard deviation to σ2 = 1.0 and investigate the effect of the anisotropy of
the random field.

5.3.1 Isotropic random field

In this problem, we take L1 = L2 = 0.1. Due to the slow decay of the eigenval-
ues, Eq. (70) is truncated after 100 terms. Therefore, the stochastic dimension
is 100. The problem is solved with HDMR where each sub-problem is solved
through ASGC. We take ε = 10−6, θ1 = 5 × 10−5 and θ2 = 10−4.

In Fig. 15, we compare the mean and standard deviation at 0.2 PVI. It is
interesting to note that although the permeability field shows heterogeneity
for different realizations, the mean saturation is the same as the solution with
homogeneous mean permeability field. This behavior is called “heterogeneity-
induced dispersion” where the heterogeneity smoothes the water saturation
profile in the ensemble sense. Our results again confirms this phenomenon,
which was first investigated in [31] through method of moment equations.
The figure also indicates that higher water saturation variations are concen-
trated near displacement fronts, which are areas of steep saturation gradi-
ents. Therefore, the comparisons between the MC and HDMR results are only
shown around the displacement fronts on the bottom two plots in Fig. 15. It is
seen that the solutions from HDMR compare quite well with the Monte Carlo
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results. The convergence of HDMR is shown in Table 3, where the normalized
error is defined the same as before with MC results as the reference solution.
Ni denotes the number of important dimensions and Nc denotes the total
number of component functions. The expansion order of HDMR for all three
cases is 2. For conventional HDMR, the total number of component functions
is 5051. However, by using adaptivity, Nc is reduced to 1047 which clearly
demonstrates the advantage of our methods. From the table, it is seen that
the results are indeed quit accurate despite the fact that 64-fold upscaling
is used to solve the deterministic problem and adaptive methods are used to
solve the stochastic problem.
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Fig. 15. Mean and standard deviation of saturation at 0.2 PVI for isotropic random
field. Top: Mean (a) and standard deviation (b) form HDMR. Bottom: Comparison
of mean (c) and standard deviation (d) between MC and HDMR near the saturation
front.

Table 3
Convergence of HDMR with different θ1 at 0.2 PVI for isotropic random field.

θ1 Ni Nc # Points Error mean Error std

1 × 10−3 2 102 1694 7.47 × 10−4 4.38 × 10−2

1 × 10−4 27 452 34379 5.69 × 10−4 2.06 × 10−2

5 × 10−5 44 1047 77988 5.10 × 10−4 6.66 × 10−3
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Next, we demonstrate the interpolatory properties of the HDMR method.
As mentioned before, one of the advantages of HDMR is that it can serve
as a surrogate model for the original problem. Realization of the saturation
for arbitrary random input can be obtained through HDMR. To verify this
property, we randomly generate one input vector and reconstruct the result
from HDMR. At the same time, we run a deterministic problem with the
fine-scale model and the same realization of the random input vector. The
comparison of these results are shown in Fig. 16. In addition, in Fig. 17, we
also plot the probability density function (PDF) and cumulative distribution
function (CDF) at point (0.2, 0) where it has the highest standard deviation
as indicated from Fig. 15(b). These results indicate that the corresponding
HDMR approximations are indeed very accurate. Therefore, we can obtain
any statistics from this stochastic reduced-order model, which is an advantage
of the current method over the MC method.
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Fig. 16. Prediction of the saturation profile using HDMR and the solution of the
deterministic fine-scale problem with the same input for isotropic random field.
Left: Saturation at 0.2 PVI from direct simulation , Right: Saturation at 0.2 PVI
reconstructed from HDMR.
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Fig. 17. Isotropic random field: (a) PDF of the saturation at point (0.2, 0) and 0.2
PVI, (b) CDF of the saturation at point (0.2, 0) and 0.2 PVI.

Similar results at 0.4 PVI are also given in Figs. 18, 19 and 20, respectively. It
is noted that the standard deviation of the saturation becomes larger at later
time as is seen from the wider strip of the non-zero regions in the contour
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maps at 0.4 PVI in Fig. 18. With the increase of the standard deviation, more
collocation points are needed to capture the overall uncertainty. Indeed, there
are 1229 component functions and 104662 collocation points in this case. From
Fig. 19, it is seen that the saturation front exhibits a much more significant
variation due to the larger standard deviation. Similarly, in Fig. 20, we plot the
PDF and CDF at point (0.4, 0) where the highest standard deviation happens.
It is noted that the spread of the PDF at 0.4 PVI is wider than that of 0.2
PVI which again indicates the larger variation of the saturation at this time
step. Thus, it is more difficult to predict the uncertainty with the simulation
time increases.
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Fig. 18. Mean and standard deviation of saturation at 0.4 PVI for isotropic random
field. Top: Mean (a) and standard deviation (b) form HDMR. Bottom: Comparison
of mean (c) and standard deviation (d) between MC and HDMR near the saturation
front.

5.3.2 Anisotropic random field

In this problem, we take L1 = 0.25, L2 = 0.1. Due to the increase of the
correlation length in the x direction, Eq. (70) is truncated after 50 terms.
Therefore, the stochastic dimension is taken as 50.

We first solve this problem at time 0.2 PVI using HDMR with ASGC. We take
ε = 10−6, θ1 = 5 × 10−5 and θ2 = 10−4. The results are shown in Fig. 21. It
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Fig. 19. Prediction of the saturation profile using HDMR and the solution of the
deterministic fine-scale problem with the same input for isotropic random field.
Left: Saturation at 0.4 PVI from direct simulation , Right: Saturation at 0.4 PVI
reconstructed from HDMR.

( )a ( )b

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S

C
D
F

 

 

MC

HDMR

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

S

P
D
F

 

 

MC

HDMR

Fig. 20. Isotropic random field:(a) PDF of the saturation at point (0.4, 0) and 0.4
PVI, (b) CDF of the saturation at point (0.4, 0) and 0.4 PVI.

is interesting to note that the shape of contours is nearly the same as that of
the isotropic random field. Only the values of standard deviation are different.
The introduction of anisotropy has the effect of increasing the output uncer-
tainty. The convergence of HDMR shown in Table 4. Again, the HDMR re-
sults compare very well with the reference solution. According to our previous
numerical results in [43], larger uncertainty requires more expansion terms.
Indeed, more expansion terms and collocation points are needed compared
with that of isotropic case. In addition, the highest HDMR expansion order is
3. There are 3 third-order component functions, which indicates the existence
of higher-order cooperative effects among the inputs. The reconstruction of
the saturation profile is shown in Fig. 22. The PDF and CDF at point (0.2, 0)
are shown in Fig. 23.

Finally, we show that HDMR is indeed a versatile method where each sub-
problem can be solved by any stochastic method. Therefore, we solve the
problem at 0.4 PVI using HDMR where each sub-problem is solved with sparse
grid based on Gauss-Legendre quadrature rule instead of ASGC. A level 3
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Fig. 21. Mean and standard deviation of saturation at 0.2 PVI for anisotropic ran-
dom field. Top: Mean (a) and standard deviation (b) form HDMR. Bottom: Com-
parison of mean (c) and standard deviation (d) between MC and HDMR near the
saturation front.

Table 4
Convergence of HDMR with different θ1 at 0.2 PVI for anisotropic random field.

θ1 Ni Nc # Points Error mean Error std

1 × 10−3 8 79 6199 1.14 × 10−3 4.69 × 10−2

1 × 10−4 38 754 72243 6.95 × 10−4 1.35 × 10−2

5 × 10−5 45 1044 96999 6.51 × 10−4 1.01 × 10−2

sparse grid is chosen for each sub-problem. θ1 is chosen as 1 × 10−5. The
results are shown in Fig. 24. The convergence of HDMR is given in Table 5.
In this extreme case, all the 50 dimensions are considered as important and
the maximum expansion order is 4. This again is consistent with our previous
results in [43]. Higher-order terms are needed to capture the large variability.
Without adaptivity, there are 251176 component functions for a 4-th order
conventional HDMR. The advantage of adaptive HDMR is more impressive
in this case. We also solve this problem directly with a 50-dimensional sparse
grid based on Gauss-Legendre quadrature rule. The results from levels 2 and
3 sparse grids are given in Fig. 25. Since the mean saturations are nearly the
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Fig. 22. Prediction of the saturation profile using HDMR and the solution of the
deterministic fine-scale problem with the same input for anisotropic random field.
Left: Saturation at 0.2 PVI from direct simulation , Right: Saturation at 0.2 PVI
reconstructed from HDMR.
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Fig. 23. Anisotropic random field: (a) PDF of the saturation at point (0.2, 0) and
0.2 PVI, (b) CDF of the saturation at point (0.2, 0) and 0.2 PVI.

same, we only show the comparison between standard deviations. For level
2 sparse grid, the number of collocation points is 5301 with the mean error
8.31 × 10−4 and std error 4.38 × 10−2. However, when increasing the sparse
grid to level 3 with a total number of 192201 collocation points, the mean
error increases to 1.90 × 10−3 and std error increases to 7.09 × 10−2. In other
words, the direct sparse grid method fails to converge. It is computationally
prohibiting to increase the sparse grid level to 4 since it would require 5402401
collocation points. The failure of convergence is due to the steep saturation
gradient near the displacement front. For such problems, it is widely known
that the polynomial based quadrature method has difficulty in convergence.
From the results shown, it seems that the adaptive HDMR can reduce the
irregularity of the stochastic space through decomposition of the dimensions.
However, a higher order expansion may be needed at a significant increase in
the computational cost.

Finally, we want to comment on the computational time of this example.
First, in Fig. 26, the convergence of standard deviation of the saturation at
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Fig. 24. Mean and standard deviation of saturation at 0.4 PVI for anisotropic ran-
dom field. Top: Mean (a) and standard deviation (b) form HDMR. Bottom: Com-
parison of mean (c) and standard deviation (d) between MC and HDMR near
the saturation front. Here each sub-problem is solved using sparse grid based on
Gauss-Legendre quadrature rule.

Table 5
Convergence of HDMR with different θ1 at 0.4 PVI for anisotropic random field.

θ1 Ni Nc Order # Points Error mean Error std

1 × 10−3 10 96 2 4126 1.32 × 10−3 5.17 × 10−2

1 × 10−4 38 763 3 54925 7.00 × 10−4 4.10 × 10−2

5 × 10−5 45 1087 3 82407 6.40 × 10−4 3.21 × 10−2

1 × 10−5 50 2050 4 218136 2.97 × 10−4 1.97 × 10−2

one point with the number of MC simulations is given. The points are chosen
at the place where the largest standard deviation occurs and they are different
for different cases. From the figure, it is seen that at least 105 MC samples
are needed in order to achieve statistical convergence. However, there are
still some small oscillations after it. As is well known, the MC convergence
rate is M−1/2, therefore, to ensure a good comparison with HDMR, we use
106 samples eventually. It took about 19 hours on 60 processors while the
average computational time for HDMR is 5 hours on the same number of
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Fig. 25. Standard deviation of saturation at 0.4 PVI for anisotropic random field us-
ing 50-dimensional sparse grid based on Gauss-Legendre rule: Comparison of stan-
dard deviation between MC and sparse grid level 2 (left) and 3 (right) near the
saturation front.

processors in such a high-dimensional case. It is also noted from the figure
that much more points are needed to achieve statistical convergence in the
anisotropic case which partially explains the larger variations of saturation as
was seen earlier. Moreover, an interesting observation is that the shapes of the
convergence plot are nearly the same at the two time instants for the same
random input. This phenomenon suggests that although the convergence rate
of MC is independent of the number of stochastic dimensions, it does depend
on the regularity of the stochastic input space. In general, more MC samples
are needed for a stochastic space which is not smooth as is seen from the case
of the anisotropic random field.

6 Conslusions

In the first part of this paper, a new multiscale methodology using mixed finite
element method is developed for the solution of elliptic equation arising from
the heterogeneous porous media flow problem. This multiscale methodology is
based on the framework of the heterogeneous multiscale method which adds a
new perspective into the area of numerical multiscale methods. A novel bound-
ary condition for the local cell problem is proposed which gives more realistic
flow conditions across coarse-element interface. In addition, a reconstruction
method for the fine-scale velocity is also proposed, which ensures the continuity
of the mass at both local and global scales. The first two numerical examples
considered verify the accuracy of the new method. However, as a first step
towards this new method, only a single-phase flow and transport problem are
considered. Our ongoing research includes investigating the multi-phase flow
and incorporating the multiscale source terms and well modeling.
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Fig. 26. Standard deviation of the saturation at the point, where the largest value
occurs, obtained from MC simulations versus the number of realizations.

In the second part of this paper, we consider the uncertainty quantification
when the permeability field is modeled as a random field. The newly developed
multiscale method is used as a direct solver within the framework of ASGC and
HDMR. Our numerical results in Example 3 compare well with the MC results
with fine-scale solvers, which again verifies the accuracy of both multiscale and
HDMR methods. Our study confirms the interesting phenomenon that the
introduction of permeability heterogeneity leads to the heterogeneity-induced
dispersion. The obtained results also indicate that the HDMR expansion can
serve as an accurate surrogate model for the underlying stochastic problem.
Therefore, our ongoing research also includes using this stochastic framework
for multiscale permeability estimation as an extension to our previous work
in [61]. In addition, the input uncertainty involved in the current work is only
from the analytical KL expansion with known covariance. It is more interesting
to consider data-driven stochastic input models from experimental data such
as in [48].
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